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Abstract. Semi-supervised learning (SSL) has shown its effectiveness
in learning effective 3D representation from a small amount of labelled
data while utilizing large unlabelled data. Traditional semi-supervised
approaches rely on the fundamental concept of predicting pseudo-labels
for unlabelled data and incorporating them into the learning process.
However, we identify that the existing methods do not fully utilize all the
unlabelled samples and consequently limit their potential performance.
To address this issue, we propose AllMatch, a novel SSL-based 3D clas-
sification framework that effectively utilizes all the unlabelled samples.
AllMatch comprises three modules: (1) an adaptive hard augmentation
module that applies relatively hard augmentations to the high-confident
unlabelled samples with lower loss values, thereby enhancing the con-
tribution of such samples, (2) an inverse learning module that further
improves the utilization of unlabelled data by learning what not to learn,
and (3) a contrastive learning module that ensures learning from all the
samples in both supervised and unsupervised settings. Comprehensive
experiments on two popular 3D datasets demonstrate a performance im-
provement of up to 11.2% with 1% labelled data, surpassing the SOTA
by a significant margin. Furthermore, AllMatch exhibits its efficiency in
effectively leveraging all the unlabelled data, demonstrated by the fact
that only 10% of labelled data reaches nearly the same performance as
fully-supervised learning with all labelled data. The code of our work is
available at: github.com/snehaputul/AllMatch.
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1 Introduction
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Fig. 1: Performance in compari-
son to unlabelled data usage.

In the realm of 3D computer vision, Point Cloud
applications are on the rise, finding extensive
use in diverse domains. This increasing popu-
larity of Point Cloud applications across vari-
ous 3D computer vision domains has heightened
the demand for annotated data, a resource-
intensive and expensive task [16]. To tackle this

https://github.com/snehaputul/AllMatch
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issue, 3D semi-supervised learning (SSL) emerges as a promising avenue. By cap-
italizing on scarce labelled data in conjunction with abundant unlabelled data,
this approach has demonstrated its efficacy in different computer vision applica-
tions, including 3D object recognition. Most popular forms of SSL (e.g. [21], [28])
involve predicting pseudo-labels for the unlabelled data and using only the high-
confident predictions for learning. However, due to the hand-designed nature of
the high-confidence-based filtering, most of the unlabelled samples never con-
tribute to the learning (Figure 1).
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Fig. 2: (left) Pseudo label utilization over
the training epochs by FixMatch and Con-
Fid. While ConFid does better utilization
than FixMatch, none properly utilizes all
unlabelled data. (right) Loss over training
for high and low-confident pseudo-labels.
The high-confident samples are selected for
unsupervised learning, but low loss results
in marginal contribution to learning.

Some of the more recent works
propose different techniques to in-
crease the number of unlabelled sam-
ples the model learns from. For exam-
ple, FlexMatch [28] introduced a dy-
namic threshold strategy, where the
threshold value is adjusted accord-
ing to the model’s learning status us-
ing curriculum learning. SoftMatch [3]
proposed a trade-off between qual-
ity and quantity to increase unla-
belled data usage. While there has
been some progress in this direction,
these methods are specially developed
for the image domain and have not
been explored in the context of 3D
SSL. Furthermore, as shown in Figure
2 (left) for 3D SSL, FixMatch utilizes about 25% of the unlabelled data, while
the current state-of-the-art (SOTA) method, ConFid [8], utilizes about 76% of
the unlabelled data. Moreover, we find that the correctly predicted pseudo-labels
do not contribute much towards the learning, as they have higher confidence in
prediction and lower loss (Figure 2 (right)).

In this work, we propose a novel semi-supervised framework named AllMatch
that handles the above-mentioned problems and ensures learning from all the un-
labelled data. AllMatch consists of three modules, all of which improve different
aspects of increasing unlabelled data usage. While the concepts of these modules
are not entirely new, they have never been explored in 3D SSL, especially with
the focus on increasing the utilization of unlabelled data. The modules in All-
Match are: (a) An adaptive hard augmentation(AHA) module that increases the
augmentation strength of the high-confident unlabelled samples with lower loss.
This module ensures better utilization of high-confident samples that the model
has already learned, thus leaving no further contribution to the model’s learning
process. (b) An inverse learning module that further ensures better utilization of
unlabelled samples by assigning inverse pseudo labels to the low-confident pre-
dictions and learning what not to learn. (c) A contrastive learning (CL) module
that learns from all the unlabelled data in unsupervised learning settings. This
module ensures that the samples excluded from pseudo-label-based learning also
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contribute to the learning process by participating in CL. Additionally, we utilize
a modified supervised contrastive loss [12] for learning from the labelled data in
a similar learning setting as the unlabelled data.

We evaluate AllMatch on two popular point cloud datasets, ModelNet40 [25]
and ScanObjectNN [23], with different amounts of labelled sets. We compare
AllMatch with the existing SSL methods and find that AllMatch outperforms
the existing SOTA by up to 11.2% and 10.45% on ScanObjectNN and Model-
Net40 datasets, respectively, with a minimal amount of labelled data. AllMatch
also shows superior performance with a lower amount of labelled set, indicating
its effectiveness in utilizing all unlabelled samples. With our proposed method,
only 10% of the labelled data performs almost as well as in a fully supervised
setting with all the labelled data. Furthermore, our method is more computa-
tionally efficient than the previous SOTA, ConFid [8], which requires 500 epochs
of training compared to 250 in ours. We also conduct an in-depth ablation study
and sensitivity analysis demonstrating the importance of all three components
for AllMatch’s superior performance. Here, the AHA module shows the highest
impact on the model’s performance, followed by inverse learning and contrastive
learning modules. Our main contributions to this work can be summarized as
follows:

– We propose a novel semi-supervised 3D classification framework named All-
Match that effectively utilizes the whole unlabelled set to improve the per-
formance.

– We introduce an adaptive hard augmentation module that efficiently utilizes
the higher-confident samples with lower loss and an inverse learning module
to further boost the utilization of unlabelled samples by learning from low-
confident predictions.

– We introduce a contrastive learning module to ensure learning from the
remainder of the unlabelled data that are not utilized by pseudo-label-based
learning.

– We improve the SOTA for 3D semi-supervised learning by 11.2%, and 10.45%
on the ScanobjectNN and ModelNet40 datasets, respectively. We also show
that AllMatch achieves almost similar results in a fully-supervised setting
with only 10% of labelled data.

2 Related Work

2.1 Semi-supervised Learning

There has been significant progress in semi-supervised learning in recent years,
mostly for image representation learning. Most dominant approaches in semi-
supervised learning can be divided into two main categories: consistency reg-
ularization [22, 26] and entropy minimization [1, 2, 21]. The consistency regu-
larization learns by enforcing consistency in the prediction of the model under
different perturbations. On the other hand, entropy minimization learns by re-
ducing the entropy in the prediction of the model on the unlabelled data. One of
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the most prominent methods in this category is FixMatch [21]. The basic concept
of FixMatch is to predict the pseudo-label for the unlabelled data from a weakly
augmentation of the input and then utilize this as the supervision for a strongly
augmented sample if the confidence of the pseudo-label is high. One main issue
with this approach is its reliance on the quality of the pseudo-labels. Also, the
fixed thresholding nature results in very low utilization of the unlabelled data
as the low confidence prediction does not contribute towards the learning pro-
cess. Recently, several methods have been proposed to increase the utilization of
the unlabelled data by proposing variants of the thresholding concept, including
Dash [27], FlexMatch [28], CoMatch [15], SimMatch [29], ConMatch [13].

Dash [27] selects unlabelled samples based on a criterion where their cross-
entropy loss is smaller than an adjustable threshold value. FlexMatch [28] is an-
other popular work that utilizes curriculum learning to adapt the threshold value,
taking into account the class-wise learning status. This dynamic threshold is then
applied to select pseudo-labels with high confidence. CoMatch [15] introduces a
co-training framework that involves the interaction between class probabilities
and embeddings. The embeddings impose a smoothness constraint on class prob-
abilities to enhance the quality of pseudo-labels. These refined pseudo-labels are
used as targets for training both the classification head with cross-entropy loss
and the projection head with a graph-based contrastive loss. SimMatch [29]
adeptly aligns similarity relationships at dual levels, utilizing a memory buffer
for annotated examples to amplify the synergy between semantic and instance
pseudo-labels. ConMatch [13] elevates model efficacy through the integration of
confidence-guided consistency regularization. This approach tackles the hurdle of
learning from a restricted pool of labelled data by promoting consistent predic-
tions on unlabelled data, all the while taking into account the confidence levels
associated with those predictions. SequenceMatch [17] enhances semi-supervised
learning by minimizing prediction distribution divergence between weakly and
strongly augmented examples. It underscores the significance of diverse augmen-
tations and consistency constraints in the learning process. CHMatch [24] inte-
grates instance-level prediction matching and contrastive graph-level matching
through the use of a memory-bank-based adaptive threshold strategy. It em-
ploys hierarchical label-guided graph matching to enhance contrastive feature
learning, providing a more robust approach to feature representation. While
semi-supervised methods exhibit promising performance in the image domain,
a notable gap exists in the SSL literature for point clouds, particularly in the
context of classification tasks.

2.2 Semi-supervised Learning in Point Cloud

Semi-supervised learning has recently been explored by a few prior works on the
3D point cloud classification. For example, [4] introduces a semi-supervised learn-
ing framework, leveraging consistency constraints to ensure uniform predictions
on both original and perturbed point clouds. This approach mitigates overfitting
the limited labelled data available. Moreover, it incorporates pseudo-label gener-
ation to provide high-quality labels for unlabelled point clouds, thereby enhanc-
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ing the supervision of the discriminative model. On the other hand, [7] presents
a multi-modal semi-supervised learning framework featuring an instance-level
consistency constraint and a multi-modal contrastive prototype (M2CP) loss.
M2CP works towards minimizing intra-class feature variations by optimizing
the distance to class prototypes for each object. ConFid [8] is another promi-
nent work that specifically addresses class-imbalanced data scenarios, which is
a prevalent challenge in the context of point clouds. ConFid takes into account
class-level confidence through a resampling strategy designed to prevent bias to-
wards high-confident classes. Nevertheless, all existing methods fall short of fully
harnessing the potential of unlabelled data. This suggests a potential research
gap in the realm of SSL-based 3D classification that maximizes the utilization
of all available unlabelled data.

3 Method

3.1 Preliminaries on SSL

Semi-supervised methods learn from a small amount of labelled data and a rela-
tively large amount of unlabelled data in supervised and unsupervised settings,
respectively. Let, Xlb = (xi, yi)

n
i=1 and Xulb = (xi)

N
i=1 represent the labelled

and unlabelled sets with n � N . Here, xi ∈ Rm×3 represents a 3D point cloud
with m points, and yi is the corresponding class label. Consequently, the semi-
supervised learning can be formulated as:

min
θ

[
∑

(xi,yi)∈Xlb

Lsup(xi, yi, θ) + ω
∑

xi∈Xulb

Lunsup(xi, θ)], (1)

Here, θ represents the learnable parameters, Lsup and Lunsup are supervised
loss (cross-entropy loss, H(xi, yi)) and unsupervised loss. ω is the weight that
balances the importance of the unsupervised loss.

Unsupervised learning is the key component of semi-supervised learning, ex-
hibiting variations across different SSL methods. Consistency regularization is
one of the common unsupervised losses that is learned by forcing the predic-
tions of the same sample to be consistent under different perturbations (aug-
mentations) [1,2,20]. Another popular form of unsupervised learning is entropy
minimization [21, 28], which learns from the unlabelled data by predicting a
pseudo-label for each sample. Our method is built over the entropy minimiza-
tion concept from FixMatch [21]. More specifically, FixMatch first generates a
class prediction for an unlabelled sample from a weakly augmentation of the
sample and considers it as a pseudo-label if the confidence of the prediction is
above a pre-defined threshold. Finally, these high-confident pseudo-labels are
used as supervision for a strong augmentation of the sample.

Let, x(i)w = φ(xiulb) and xs = ω(xiulb) be the weakly augmented and strongly
augmented samples, and pm(pz(x)) be the output of the model, where, pz is
the encoder and pm is the classifier. The unsupervised loss of FixMatch can be
defined as follows:
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Lunsup =
1

µB

µB∑
b=1

1
(
max(pm(pz(x

(i)
w ))) ≥ τ

)
·

H
(
argmax(pm(pz(x

(i)
w ))), pm(pz(x

(i)
s ))

)
, (2)

where τ is the fixed confidence threshold, µ is the ratio of unlabelled to labelled
batch size, B is the batch size and H represents the cross-entropy loss function.

Nevertheless, a fixed (high) threshold results in under-utilization of the unla-
belled data as the model does not utilize the low-confident samples. To address
this, FlexMatch [28] and ConFid [8] propose dynamic pseudo labelling to ad-
just the threshold value considering the class-wise learning status by curriculum
learning. In this context, the learning status refers to the ratio of predicted la-
bels to the target label of a class. Specifically, the threshold value is low for
high learning status classes to encourage the learning process, and vice-versa.
Yet, the model does not utilize all the available unlabelled samples. Following,
we describe our proposed solution, AllMatch, which effectively utilizes all the
unlabelled samples for learning.

3.2 AllMatch

AllMatch consists of three components, all aimed towards improving the utiliza-
tion of the unlabelled data: adaptive hard augmentation, inverse learning and
contrastive learning. Following, we discuss each of the components in detail.

Adaptive hard augmentation (AHA). One limitation of the high confidence-
based thresholding method is that the selected (highly confident) samples are
already well learned by the model [9]. As a result, the loss for these samples is
very low and, therefore, does not contribute towards the learning of the model.
Following [9], we refer to these high-confident samples as easy samples and pro-
pose an adaptive hard augmentation (AHA) module to further utilize the easy
samples. The basic idea is to apply relatively hard augmentations on the easy
samples to introduce further regularization while applying the usual strong aug-
mentations for the remaining samples. Note that the alternation between extra
hard augmentation and strong augmentation plays a crucial role, as excess aug-
mentation can potentially have a detrimental effect on the model. While the
role of hard augmentation is extensively studied in the image semi-supervised
learning literature [9], it’s not well explored in 3D point clouds.

We define the easy samples based on a historical loss computed until the
current epoch t. More specifically, we calculate the historical loss for the i− th
sample as the exponential moving average (EMA):

Hti = (1− κ) · Ht−1i + κ · lti , (3)

where, lti is computed as:

lti = H
(
argmax(pm(pz(x

(i)
w ))), pm(pz(x

(i)
s ))

)
, (4)
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The lower historical loss for sample i indicates an easy sample on which we
apply additional hard augmentations. To divide the samples into easy and hard
samples based on the historic loss, we utilize the OTSU [18] function that returns
a binary indicator Ti for each sample. Here, Ti = 0 indicates easy sample, and
Ti = 1 indicates hard sample. Finally, for an easy sample, we apply a series of
transformations to act as hard augmentation, including random scaling, rotation,
translation and jitters. The AHA module can be represented as:

Augmented sample(xi) =

{
K(xi), Ti = 1
K′(xi), Ti = 0

, (5)

Here, K′(xi) represents the extra hard augmentation, while K(xi) represents
hard augmentation. In the implementation, we start applying the AHA module
after certain epochs of training, defined by ‘warm-up epochs.’ Since the loss is
relatively high for all samples at the start of training, adding the AHA from the
start of training does not add any benefit.

Inverse learning. Another challenge in pseudo-labeling-based semi-supervised
learning comes from the ambiguity in the predictions of the models. More specif-
ically, the samples with low confidence (high ambiguity) are discarded by the
pseudo-labeling concept. These low-confident samples do not contribute to the
model’s learning process, as pseudo-labels cannot be assigned to them. Conse-
quently, a significant number of unlabelled samples go unused. However, these
neglected unlabelled samples can be re-purposed to optimize the model inversely
by learning what not to learn.

As demonstrated in [6] for SSL in the image domain, after a certain number of
training iterations, the correct classes are situated in one of the top-k predictions
(i.e., the k classes with the highest predicted probabilities) of the model. In
essence, the model is extremely confident in its predictions for containing the
right class in one of these top-k classes. Therefore, it is advantageous to treat
the remaining classes (those outside the top-k predictions) as wrong class for the
input. Motivated by [6], we incorporate inverse learning, which learns to avoid
predicting such classes.

For Inverse learning, following the convention of FixMatch, we first predict a
pseudo-label from a weakly augmented sample and find the value of k for which
the model achieves 100% accuracy on the strongly augmented samples at the
current epoch. Then, we sort the classes in order of highest to lowest confidence
using a ranking function, Rank. Finally, for the classes with Rank > k we
perform inverse learning on the strongly augmented samples as:

Linv = −
1

B

B∑
i=1

C∑
c=1

1[Rank
(
pm(pz(x

(i)
w ))

)
> k] · log

(
1− pm(pz(x

(i)
s ))

)
, (6)

Contrastive learning (CL). While the AHA and inverse learning module in-
crease the utilization of the unlabelled data, the samples that are neither very
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high-confident nor very low-confident are not utilized by any of the above mod-
ules. To ensure learning from the remainder of the sample, we incorporate a
contrastive loss on the unlabelled set that learns from all the samples in an unsu-
pervised setting. Contrastive methods learn from positive and negative samples,
with the aim of pushing the positive pairs closer in the embedding space and
moving them away from the negative sample. In this context, positive samples
are the perturbation of the same sample, while all other samples are consid-
ered negative. Contrastive learning has shown remarkable success in learning
representation in different computer vision domains [5,11,20]. Since contrastive
learning does not require labels, it ensures total usage of unlabelled data.

For each unlabelled sample, x(i)ulb ∈ Xulb, a weak perturbation φ and a strong
perturbation ω is applied to generate a positive pair. In our case, we apply
rotation and random scale as weak augmentation, and for strong augmentation, a
couple of different augmentations (e.g. jitter, translation, rotation, random scale)
are randomly applied. The augmented samples are then fed to the encoder and
projection head that generates the embedding zi = pz(y|xulbi), where [zwi

, zsi ] ∈
zi. Finally, the unsupervised contrastive loss [5] function can be described as:

Lcon = − 1

2B

2B∑
i=1

log
exp(zi, zκ(i)/τ)∑2B

k=1 1[k 6=i] exp(zi, zk/τ)
, (7)

where, κ(i) is the index of the second augmented sample, 1[k 6=i] is an indicator
function which returns 1 when k is not equal to i, and 0 otherwise. τ is a
temperature parameter. Note that the pair samples are the same as the ones
used for the unsupervised loss mentioned above. So, the contrastive loss does
not increase the computational complexity.

Additionally, we utilize a modified supervised version of contrastive loss (su-
pervised contrastive loss [12]) on the labelled set. Like the unsupervised con-
trastive loss, the supervised contrastive loss learns from the augmented positive
and negative samples. However, the additional label information benefits the
model by pushing together samples that belong to the same class. The super-
vised contrastive loss can be formulated as follows:

Lsupcon =

2B∑
i=1

− 1

2Byi − 1

2B∑
j=1

1[i6=j] · 1[yi=yj ] · log
exp(zi, zj/τ)∑2B

k=1 1[k 6=i] exp(zi, zk/τ)
, (8)

where, yi represents class label of sample i. 1[yi=yj ] is an indicator function
that returns 1 when the samples i and j belongs to same class label. 2Byi − 1
represents number of positive samples from class yi.

3.3 Total Loss

Finally, the total loss of AllMatch is the sum of all the described above:

L = Lsup + Lunsup + α · Lsupcon + β · Lcon + γ · Linv , (9)
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Algorithm 1: AllMatch Algorithm
Input: Labelled batch Bl = {(xi, yi)}M , unlabelled batch Bu = {ui}N

1 Apply AHA to Bl as Eq. 5
2 lsup = Lsup(Bl)
3 lunsup = Lunsup(Bu) // via Eq. 2
4 lcon = Lcon(Bu) // via Eq. 7
5 lsupcon = Lsupcon(Bl) // via Eq. 8
6 for i ← 1 to N do
7 Compute the rank using, Rank

(
pm(pz(x

(i)
w )

)
for c ← 1 to C do

8 if Rank
(
pm(pz(x

(i)
w ))

)
> k then

9 linv+ = log
(
1− pm(pz(x

(i)
s ))

)
10 end
11 end
12 Compute and update historical loss, Hi // via Eq. 3
13 Update mark τi = 1(Hi ≤ OTSU(Hi))

14 end
15 ltotal = lsup + lunsup + α · lsupcon + β · lcon + γ · linv

Here, α, β and γ are loss factors balancing the importance of each loss. We find
optimal values of each factor from the empirical study described in Section 4.5.

4 Experiments

In this section, we discuss the experimental results of our study on the Model-
Net40 and ScanobjectNN datasets. First, we discuss the main result, followed
by an in-depth ablation study of our proposed modules and sensitivity analysis
of different module-specific parameters.

4.1 Implementation Details

We evaluate AllMatch on two popular point cloud datasets, ModelNet40 [25]
and ScanObjectNN [23]. For the implementation details and hyper-parameters,
we nearly follow the existing SOTA, ConFid [8], for a fair comparison. We use
PointTransformer [10] as the encoder. We train the model with SGD optimizer
with a learning rate of 0.00005 for 350 epochs. The unlabelled to labelled batch
size ratio is 4, and the labelled batch size is 24. We utilize rotation and ran-
dom scale as weak augmentation and random scaling, rotation, translation and
jitter as strong augmentation. Note that, as a geometric entity, the underline
representation of the point clouds must remain invariant under specific transfor-
mations [19]. Thus, we only chose the augmentation methods that do not violate
this special property of the point clouds. For the AHA module, various combina-
tions of strong augmentation are applied as an additional hard augmentation to
the easy samples. A detailed sensitivity analysis on the augmentation strength
is discussed in Section 4.5.



10 S. Paul et al.

Table 1: Comparison of AllMatch with the SOTA methods in 3D object classification
task on ModelNet40 dataset with different amounts of labelled sets. Results of the
prior works are adopted from [8]. Here, ‘Overall Acc’ and ‘Mean Acc’ are the overall
accuracy and the average of per-class accuracy.

Method
2% 5% 10%

Overall Mean Overall Mean Overall Mean
Acc Acc Acc Acc Acc Acc

PCT [10] 71.1 61.0 77.1 69.2 84.6 77.2
PL [14] 69.7 59.6 78.3 69.0 85.1 77.7

Flex-PL [28] 66.7 54.9 74.2 62.3 83.2 70.3
ConFid-PL [8] 74.4 61.9 80.6 73.5 86.5 80.4
FixMatch [21] 70.8 62.7 78.9 71.1 85.5 79.4

Dash [27] 71.5 63.0 79.7 71.8 85.9 80.1
FlexMatch [28] 70.1 61.2 80.5 70.4 86.2 78.7

ConFid-Match [8] 73.8 64.1 82.1 74.3 87.8 82.5
AllMatch 84.3 82.6 89.0 87.9 90.2 89.8

4.2 Main Result

The overall comparison to the previous works is presented in Tables 1 and 2 for
ModelNet-40 and ScanObjectNN datasets, respectively. Here, PL [14], FixMatch
[21], Dash [27], and FlexMatch [28] were initially proposed for the image domain
and later adopted to the PointCloud, whereas ConFid [8] is specifically designed
for the point cloud. The results for other prior works are directly adopted from
the reported results in ConFid [8]. Following the experimental setups of previous
literature on this task, we report the results for different amounts of labelled
samples. More specifically, we evaluate the performance on three different sizes
of labelled sets: 2%, 5%, and 10% for the ModelNet40 dataset and 1%, 2%, and
5% for the ScanObjectNN dataset. We report the overall accuracy and the mean
of class-wise accuracy (mean accuracy) on the test set.

As we observe from these tables, AllMatch outperforms SOTA by a signif-
icant margin across all sizes of unlabelled sets, demonstrating substantial im-
provement. For example, with only 2% labelled data from ModelNet40 (Table
1), AllMatch outperforms ConFid by a notable 10.48% and 18.52% in overall and
mean accuracy. While we also see considerable improvements for 5% and 10%
data, the biggest improvement is observed when the least amount of labelled
data (2%) is utilized. This indicates the effectiveness of AllMatch in learning
from a very small amount of labelled data.

Table 2 illustrates a similar on the ScanObjectNN dataset. With only 1%
of the labelled set, AllMatch outperforms the SOTA by a superior 11.20% on
overall accuracy and 14.67% on mean accuracy. The maximum performance gain
is again observed for the least amount of labelled samples.
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Table 2: Comparison of AllMatch with the SOTA methods in 3D object classification
task on ScanObjectNN dataset with different amounts of labelled sets. Results of the
prior works are adopted from [8]. Here, ‘Overall Acc’ and ‘Mean Acc’ are the overall
accuracy and the average of per-class accuracy.

Method
1% 2% 5%

Overall Mean Overall Mean Overall Mean
Acc Acc Acc Acc Acc Acc

PCT [10] 32.1 26.1 44.7 36.5 56.6 50.0
PL [14] 31.2 25.8 47.5 38.6 58.1 51.5

Flex-PL [28] 29.2 24.2 47.2 37.6 60.1 51.9
Confid-PL [8] 32.6 27.1 48.8 41.5 63.1 55.2
FixMatch [21] 33.5 27.6 47.4 39.9 59.4 52.4

Dash [27] 35.1 29.3 50.3 44.1 62.8 60.3
FlexMatch [28] 34.2 26.2 48.5 39.7 63.4 57.2

ConFid-Match [8] 38.2 32.7 57.0 48.6 69.4 65.5
AllMatch 49.4 47.4 60.8 58.9 77.5 76.0

4.3 Ablation Study

Table 3: Ablation study of dif-
ferent proposed components of
AllMatch on ModelNet40.

Inv. lear. AHA CL OA
X X X 84.28
X X 82.94
X X 79.98

X X 80.50
X 77.90

X 79.37
X 80.10

74.80

In this section, we perform a detailed ablation
study to understand the importance of different
components in our proposed method. We start
with the main ablation on the 3 main compo-
nents of AllMatch, then perform another abla-
tion on the contrastive learning approach.

Main ablation. Table 3 presents the results for
the main ablation study. Here, we ablate all the
combinations of the three main components of
AllMatch: adaptive hard augmentation (AHA), inverse learning and contrastive
learning (CL). First, we drop these modules individually and then in groups to
investigate their significance on overall performance. We perform this study with
2% of the labelled data and report the overall accuracy (OA).

As we observe from this table, when we drop the AHA module individually,
the method’s performance declines by 4.29%. This is considerably higher than
the drops observed by dropping inverse learning or contrastive loss, making AHA
the most important module in AllMatch. We find the inverse learning to be the
second most important component, removing which results in a 3.77% drop in
accuracy. Finally, we find that contrastive learning also plays a critical role.
Removing the contrastive learning also results in a 1.34% drop in accuracy. We
find similar trends when two modules are removed at a time. We observe a
performance drop of 6.37% when we remove both the AHA and inverse learning
modules. Similarly, removing the AHA and contrastive learning module results
in a 4.9% decline in AllMatch’s performance. The least accuracy we find by
utilizing a single component is 77.9% with contrastive learning. Finally, we find
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that removing all components drastically drops the performance by 74.8%. This
further shows the importance of each of the components in AllMatch.

Table 4: Ablation study of
contrastive loss components
of AllMatch on ModelNet40
dataset.

Sup. Unsup. OA
X X 84.28

X 83.47
X 83.06

82.94

Ablation on contrastive learning. Next, we
perform another study on our contrastive learn-
ing module, which consists of supervised and self-
supervised contrastive loss. Here, we perform an-
other ablation study by removing the contrastive
learning components in different combinations. Sim-
ilar to the previous study, we do this study on 2% of
labelled data from ModelNet40. The results of this
study are presented in Table 4. As we find from this
table, removing both of the components results in
a considerable drop in performance, with unsupervised contrastive loss having
a greater impact on the final performance. More specifically, when both the su-
pervised and unsupervised contrastive losses are employed, AllMatch achieves
its highest performance, 84.28%. By dropping the unsupervised contrastive loss,
the method’s overall accuracy drops sharply by 1.21%. However, when the su-
pervised loss is removed, the overall accuracy declines by 0.8%. This proves
AllMatch is gaining better learning signals from the unsupervised contrastive
loss component. Finally, when both contrastive losses are removed, AllMatch
returns with AHA and inverse learning setting with an overall loss of 82.94%.

4.4 Performance on Increased Labelled Set Size
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Fig. 3: Impact of labelled
set size.

In this section, we study the performance of different
amounts of labelled data. Specifically, we investigate
how an increase in the amount of labelled data impacts
performance. To this end, we increase the labelled set
size to all labelled data with a 10% interval (Figure
3). It is evident that when only a small amount of la-
belled data is available (2% - 5%), the overall accuracy
of AllMatch is relatively low and gradually increases
until it reaches 10% of the labelled set. With 10% la-
belled data, the overall accuracy reaches 90.19%, com-
pared to 90.75% with the whole labelled set. In other
words, the performance with 10% of labelled samples
is almost close to the performance with 100% of the labelled data. This again
proves the fact that AllMatch properly utilizes all the unlabelled data, making
it possible for 10% labelled data to reach such performance.

4.5 Sensitivity Study

In this section, we perform detailed sensitivity studies on different parameters
of the AllMatch. Following, We discuss the details of these experiments.
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Table 5: Impact of different values of loss factors.

α Overall accuracy

0.2 84.28
0.5 83.38
1.0 81.96

(a) α vs acc.

β Overall accuracy

0.2 84.28
0.5 83.46
1.0 81.24

(b) β vs acc.

γ Overall accuracy

0.2 83.22
0.5 83.38
1.0 84.28

(c) γ vs acc.

Loss factor. The final loss function for training AllMatch consists of multiple
losses and includes weight factors to balance the impact of individual loss com-
ponents. Table 5 illustrates the influence of different loss factors on AllMatch’s
overall performance. The experiments are conducted on the ModelNet40 dataset
with 2% of labelled data. It is observed that the overall accuracy of AllMatch is
sensitive to the values of these factors. Specifically, lower loss factor values lead
to higher performances for both supervised and unsupervised contrastive losses,
while higher values for the inverse loss factor prove beneficial. This indicates
that the inverse loss plays a more significant role in contributing to AllMatch’s
performance compared to the contrastive loss.
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Fig. 4: Sensitivity study
on the augmentation
strengths.

Augmentation strength. Augmentation strength
is an essential hyperparameter for the Adaptive Hard
Augmentation (AHA) module of AllMatch. It indi-
cates the combination of different types of augmenta-
tion randomly applied as an additional hard augmen-
tation to the easy samples. In Figure 4, we evaluate the
overall performance of AllMatch for different augmen-
tation strengths ranging from 4 to 8. Here, the num-
bers represent the total number of transformations ap-
plied to a sample. As we find from Figure 4, the best
result is observed for using 4 transformations. While
the augmentations are essential for learning from easy
samples, applying a very high number of augmenta-
tions makes the optimization of the model difficult.
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Fig. 5: Sensitivity study
on the impact of different
warm-up epochs.

Warm-up epoch for AHA. As discussed in the
method section, the AHA module comes into effect af-
ter a certain epoch of training. Given that AHA intro-
duces an additional hard augmentation to easy sam-
ples, the downstream task becomes challenging for the
model. If AHA is applied right at the beginning of the
training process, it can negatively impact the model’s
performance. To this end, warm-up epochs enable the
model to learn representations from all samples ef-
ficiently during the initial training. As depicted in
Figure 5, AllMatch shows superior performance when
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warmed up for 50 epochs. However, prolonged warm-up periods diminish per-
formance, as they reduce the effective action period of AHA.

250 300 350 400 450
Epoch

76

78

80

82

84

Ov
er

al
l a

cc
ur

ac
y 

(%
)

(a) Epoch vs Acc.
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(b) LR vs Acc.
Fig. 6: Sensitivity study of epoch and
learning rate on ModelNet40.

Epoch and learning rate. Finally,
we study two hyper-parameters that
are important for the optimization
of the model, epochs and learning
rate. As depicted in Figure 6a, we
observe that AllMatch’s performance
improves by increasing the number
of epochs, reaching its peak at 350
epochs with a best performance of
84.28%. However, extending the num-
ber of epochs beyond this point results in a decline in performance. This is consid-
erably lower than the previous SOTA, which requires 500 epochs of training. This
further shows the benefit of utilizing the unlabelled data properly. In Figure 6b,
we analyze the impact of different learning rates on AllMatch’s performance. No-
tably, lower learning rates contribute to improved performance, whereas higher
values lead to a collapse in the model’s performance. For instance, at a learning
rate of 0.0005, AllMatch achieves only 12% overall accuracy, emphasizing the
sensitivity of the model’s performance to the choice of learning rate.

5 Conclusion

In this work, we identify that existing 3D semi-supervised techniques fail to cap-
italize the whole unlabelled data. To solve this issue, we introduce AllMatch, a
novel semi-supervised method for point cloud classification that effectively uti-
lizes the entire unlabelled set to improve the learnt representation. Comprised
of adaptive hard augmentation, inverse learning, and contrastive learning com-
ponents, AllMatch outperforms existing SOTA methods by a significant margin,
showcasing superior performance even with minimal (1%) labelled sets. Remark-
ably, AllMatch, with just 10% of the labelled set, attains a performance close
to the fully supervised learning with all samples, underscoring its efficiency in
minimizing reliance on labelled data.
Limitations. While our proposed method has made significant improvement in
efficiently leveraging the entire unlabelled set, there are still opportunities for
further exploration in this promising direction. In the AHA module, we success-
fully incorporated selected transformation-invariant augmentation techniques,
showcasing a positive step forward. Expanding our exploration to encompass a
more diverse range of augmentation methods could prove to be a fruitful avenue
for additional advancements. Furthermore, we only explored contrastive learning
as the self-supervised module to ensure the utilization of all unlabelled samples,
leaving room for exploring different versions and alternatives of contrastive loss.
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